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Anomalous processes at high temperature and density in a two-dimensional linear model
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We use the two-dimensional model as a toy model to study the behavior of anomalous amplitudes in the
limit where the constituent quark mass is small. Symmetry arguments show thaf-the amplitude should
vanish if m—0, but we show that the one-loop’y amplitude does not satisfy this property because of
infrared singularities. However, when a proper regularizatiesummation of a thermal mass, for instanse
taken into account, this amplitude vanishes as expected. We also study the ampfitudey and show that
it does not vanish in the same limit.
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[. INTRODUCTION pion decay amplitude depends on the kinematical configura-
tion of the external legs in order to explain the discrepancies
In past years, many works have been devoted to the studpund betweer{1,2] and calculations performed in the real
of anomalous processes at finite temperature and density, atithe formalism by{14—16. To that purpose, the®yy am-
in particular near the chiral symmetry restoration. In particu-plitude has been calculated at finiten the real time formal-
lar, Pisarski[1,2] concluded that the neutral pion decay am-ism, in the limit of small external momenta. It appeared that
plitude 7°— 2y vanishes when chiral symmetry is restofed. this limit cannot be uniquely defingi@ depends on the path
This conclusion is based on a direct calculation of the correfollowed to reach the zero momenta poiand that the re-
sponding diagrams at finite temperat@aad zero densidyin sults of[1,2,11,12 concerning this amplitude do not corre-
the imaginary time formalism, and on symmetry consider-spond to its on-shell value, but to a different way of reaching
ations that forbid certain couplings in the symmetric phasethe limit> Additionally, the conclusion according to which
An additional conclusion was that this decay might be rethe pion decay amplitude vanishes above the critical point
placed byw’o— 2y in the chirally symmetric phas@vhich ~ appeared to be questionable since the physaatshel) am-
is allowed by the same symmetry argumeas indicated by plitude has a nonvanishing limit at the critical point.
a calculation of the box diagram at finite temperature. To accommodate this result with the general arguments
This result has been confirmed by Baier, Dirks and Kobeiprovided in[1,2,12, one can notice that both Pisarski's sym-
[11] and by Salcedd12] using functional approaches in metry argumenfl,2] and Salcedo’s argumefit2] amount to
which one integrates out the fermions at the level of thethe fact that one power of the quark magke mass the
generating functional. Salcedo [ih2] gives also general ar- quarks acquire through the spontaneous breakdown of chiral
guments according to which®—2y (or 7°— v in two di-  symmetry, via their coupling to the average value of the
mensiong should vanish in the chiral phase, and be replacedield) appears in the numerator when evaluating the Dirac
by amplitudes involving ther meson. From a technical per- trace associated to anomalous amplitudes. Therefore, since
spective, the common point of all these studies is the use de average valuéo) goes to zero in the chiral phase, the
some stage of the imaginary time formalism, in the limit of numerator vanishes above the critical point. Implicit in the
vanishing external momentfa. argument is the fact that the correct dimension is provided by
In another study, one of U43] studied how the neutral inverse powers of the temperatuies opposed to powers of
the quark magsas is the case in the imaginary time formal-
ism at the static point. In other words, this argument is valid
only if the denominator does not vanish when the mass goes
to zero. This is precisely what fails when the amplitude is

for instanceé. Indeed, it has been shown[i&-10] that the relation- calculated on shell. One gets as expected one powen of

ship between the anomaly and the amplitude can be modified by the, g{o) in the numerator, but the denominator turns out to be
existence of an additional four-vectbr, (the four-velocity of the 1/mT.

plasma in the observer's framéhat can enter the general form of

thermal amplitudes.

*There are two reasons why the small momentum limit is usually 3The reason for this is easy to understand: since the energy vari-
considered in this problem. The first one is that this limit providesaples are discrete in the imaginary time formalism, the only way
an important technical simplification. The second reason is that thigne can consider the “zero momenta limit” in this formalism is to
limit is appropriate if one wants to know the effective couplings set first the discrete bosonic energies to zero, and then take the limit
between photons and mesons in the low energy regime, in order tof zero three momenta. This way, the external momenta are forced
write an effective Lagrangian for instance. to be spacelike.

This does not contradict the well established fact that the coeffi
cient of the axial anomaly is temperature independseg[3—7],
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The remaining power ofm in the denominator indicates
that the infrared or collinear behavior of the triangle diagram
worsens whemn— 0. In fact, as noted if13] and[17], the K
constituent quark mass ceases to be the relevant infrared 0
regulator whermis smaller tharg T, and should be replaced
by a thermal mass of ordeyT that does not vanish in the
chiral limit. Since an additional property of fermionic ther- 0 )
mal masses is that they respect chiral symmetry, this thermal FIG. 1. One-loopm”y amplitude.
mass cannot appear in the Dirac trace. As a consequence, the ) _
resultm/mT obtained for the on-shell amplitude in the bare two quark flavors, in which the mesons are coupled to quark
theory becomesn/my,T after one has resummed the quark fields as indicated by the following Lagrangian:
thermal massny,~gT (if m<my,). The consequence of this _ _
regularization is that the resummed on-shell decay amplitude L=iVDV—-2g¥(aty+imty”)VP, (D)
vanishes in the chiral limit. In other words, Pisarski's sym-
metry arguments holds for the physical amplitude only aftewhereto=1/2 and Tr¢?t")=62%2. We recall that in two
a proper regularizatiorin order to get rid of all potential dimensions the Dirac algebra is defined by the following set

infrared or collinear singularitigshas been issued. of relations:
Essential in this discussion is the influence of the kine-
matical conditions for the external legs on the infrared be- {y*,y"}=2g"",
havior of a thermal amplitude, since it can dramatically alter 2)
one’s conclusions. The second important point is that a cal- Yo = %f’wnﬂw

culation in the imaginary time formalism at the static point

does not give a physical amplitude. Therefore, it would beyhere e*” is the two-dimensional Levi—Civita tensor, nor-

interesting to test the second half of Pisarski's conclusionsmalized bye®'= + 1. For later use, let us quote first a generic
related to ther®o— 2y amplitude, by calculating this am- {ace formula:

plitude in the real time formalism and studying how it de-

pends on the kinematigsip to now, this amplitude has only TH(ABCy°y*)=A-BTHCy°y*)—A-C Tr(By>y*)

been considered at the static poirBince this amplitude is

given by a four-point function, it is a very complicated task +B-CTr(Ay®y»). 3

to extract this behavior in its full generality. There is, how-

ever, a toy model in which this kind of study can be done In order to keep the following expressions compact, it is
quite simply: the two-dimensional linear model. Indeed, in  helpful to define the “dual” of a given vector by

this model the neutral pion decays into a single photon, and

that analogous to the four-point amplitude suggested by Al=elvA 4
Pisarski would ber’o— v, which, being a three-point func-
tion, is rather easy to calculate. as well as the “wedge product” of two vectors:
The present paper is devoted to an analysis of the anoma-
lous amplitudes in the two-dimensional model at finite ANB=€""A,B,. )

temperature and chemical potential. We consider both the _ - . .
pion decay 7°—y two-point function and them®o— y According to these definitions, we have the obvious relations

three-point function. Emphasis is put on studying how these

functions depend on the kinematics in the limit of small ex- A=A,

ternal momenta, near the chiral limitn(small compared to

w andT). ANB=A-B, (6)
The structure of the paper is as follows. In Sec. Il we

define the model, as well as some notations and shorthands (A/AB)?=(A-B)%>—A?B2.

that will be used extensively later. In Sec. Ill, we calculate

the amplitude for ther’— y decay, and reduce it to a very WhenA+B+C=0, we have also

compact form. In Sec. IV, we study the amplitude ©to

— . Althougha priori much more involved, this amplitude AANB=B/AC=CANA. (7)
can also be reduced to a simple expression. All our results

are expressed in terms of some functigK) defined by an  Finally, we have

integral. Basic properties and limits of this function are de- _

rived in Appendix A. Finally, in Appendix B we derive some Tr(Ay>y*)=—2A*, (8)
relations between a few integrals that appear in intermediate

II. CONVENTIONS AND NOTATIONS A. Retarded amplitude
We consider the two-dimensional linearmodel[18,19 We consider first the one-loop contribution to the

(more details on this model can be found[R0—22) with — vy decay amplitude depicted in Fig. 1. The Feynman rules
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for the retarded-advanced formali$fi23—-25 give for the MTA(K)=imegk“l (K) (13)
retarded amplitude the following expression, R ’

where | (K) is a homogeneous function of degree OKn
HA(K) = —egf WTr((ILan) yH(L+K+m)y°) containing the nontrivial part of the momentum dependence
and defined by
X{nF(IO,M)DiscAR(L)AR(L+ K)

I(K)zf“"ﬂ Ne(— o, 1) —Ne(w,p) K2

C)e 27 2w, (Ly-K)?"
whereAg A(L)=i/(L2—m2=il 4e) are the retarded and ad- (14)
vanced propagatorspg(lo,u)=1exp((lo—w)/T)+1] is

the Fermi—Dirac distribution function, and where the nota—Th'S integral is studied in some important limits in Appendix

tion “Disc” denotes the discontinuity across the real energyA
axis:

+np(lg+Kg, ) DiSCAR(L+K)AAL)},  (9)

C. Discussion

; _ _ _ 2_ 2
DisCAR(L)=Ag(L) = Aa(L)=2me(lo) S(L7—m )'(10) We observe for this amplitude the same features as in four

dimensions. The most striking effect is related to what hap-
pens near the chiral limin—0, and is visible in formulas
(A7) and (Al14). In the limit m/T,m/u—0, the function

I (K) behaves as follows:

The expression of the trace is very simple,

Tr((L+m)y*(L+K+m)y®)=—2mK*, (1)
1
and, in particular, it makes obvious the fact thef is trans-  If K2=0, 1(K)= 2ame
verse with respect to the photon momentum. Moreover, be-
ing independent of the loop momentumit can be immedi-

ately factorized out of the integral. 2 _ Ko 1
If K*#0 andky#0, [(K) BT K2 CosR(w/2T)
B. Zero momentum limit (15)
At this point, it is convenient to perform the change of
variableL + K— —L on the second term of Eq9) in order 7L(3)
to make the expression more symmetric. Then, the Dirac 8773T2 it u<T,
distributions hidden in the discontinuities make the integradf ky=0, 1(K)= 1
tion overl,, trivial, which gives _ if T<p
A '

+ o — —
MA(K) = —2imeg~K“J Al ne(— o), 1) —Ne(w),p4)
— 2T 2w The configuration obtained witk,=0 and u<T corre-
sponds to Salcedo’s result, previously obtained in the imagi-
1 (12) nary time formalism at the static point. This point is particu-
pst1 2L, K+K? lar because the first term in the expansion @€) at smallm
vanishes ifko=0. For any other point, the expansion starts
where we denotey, =17+ m? andL ,=(na,1). Itis now with a term behaving likd (K)~21/mT. However, as one
trivial to perform an expansion in powers of the externalturns the chemical potential on, we see that this leading term
momentunK. The first term in this expansion, of degree 0 in iS exponentially suppressed wher>T. As a consequence,
K, vanishes because the corresponding integrand is an odid & dense and cold system, the functidiK) starts by a
function of I. The first nonvanishing term in this expansion term in 1j4?, whetherky,=0 or not.
comes at the next order, and is of degree Kin The reason why the on-shell value is so singular when
m—0 is related to collinear singularities: in+11 dimen-
sions, all the spatial vectors are aligned, so that we are al-
ways at the most singular poifitdere also, in order to be
able to apply Pisarski’'s argument, one should first regularize
the theory by resumming a thermal m448,17. Then, all

X

“One should pay special attention to the chemical potential. In-
deed, one should use a chemical potential in statistical weights
where the Feynman rules give an argumerkd,. In other wordsu
appears in the formalism to account for the fact that the fermions
carry some conserved charge, and the sign of this charge for a given
propagator depends on how one orientates the propagator. 5This is to be contrasted with what happens in four dimensions:

We have dropped the R/A prescription for the denominator, sincehere the collinear singularities are softened by subsequent angular
it can easily be recovered at the very end of the calculation byintegrations, so that the on-shell amplitude is not exceptionally sin-
substitutingky—ko+i0™". gular[13,16].
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the powers ofm in the denominators would be replaced by

. no\‘ o\‘
powers of the thermal mass, leaving an uncompensated *‘P \S
power of m—O0 in the numerator. From Ed13), we can K X
write an effective Lagrangian coupling the neutral pion to the L + L
photon: ) A
0,7{ S no,'ﬂ{ P

. 0 i
Lﬂ%: _egmswf dzxA”“(x)I (i&x)ﬂiwo(x) FIG. 2. One-loopm°oy amplitude.

Z—GQZEWJ d?XA*(x)1 (i dx)(a)dym°(x). (16)  tion of the second diagram. With the additional chatge
— —L on the second diagram, we can merge the two contri-
This result completes the effective coupling found by Sal-butions and find
cedo in[12], by incorporating all the nonlocal terms. The
reason why the nonlocality of this coupling has been missed
in [12] can of course be traced back in the choice of consid-
ering only amplitudes at the static point.

. e dl np(—op,u) —Ne(op, 1)
We can also make here a general comment regarding the | AR K, P,S)=ieg® | ——

. . —x 2 2(,()|
fact that the symmetry argument implying that th&y am-
plitude vanishes in the chiral limit is not verified in the above Tré
- i i i X
one-loop calculation. In fact, this symmetry argument applies n;ﬂ (2L, K+ K2)(— 2L,-S+ )

to the full amplitude, but not necessarily at the level of indi-
vidual diagrams. More precisely, since the chiral limit corre- Tr
sponds tan— 0, the argument will hold for any contribution + = b ~
that remains finitgiin particular, IR finitg in this massless (2L, P+PH(—2L, K+K?)
limit. The consequence of this problem is that this symmetry Tr*

C

is manifest in perturbation theory only feetsof diagrams + > -, (18
that are IR finite. This is why it may be necessary to perform (2L, S+S)(=2L, P+P%)
the resummation of a thermal mas., consider larger sets
of diagrams whose sum is infrared finiie order to recover )
the result implied by chiral symmetry. where the traces are given by
IV. #°c—y AMPLITUDE
A. Retarded amplitude Tr/aL: —2m? Tr( p,y5 y*)—2L . STr(L ny5,yu)
We now consider the one—lpop F:ontnbuuon to théo CTHL, BK 5 yR),
—y amplitude, represented in Fig. 2. In the retarded- 7
advanced formalism, thE4rg component of the vertex re-
ceives the following contribution from the first diagram: )
Tre=—2m? Tr(Py°y*)+2L,,- P Tr(L,»°y*)
d2L —Tr(KPL,y>y"), (19
Fﬁéé)(K,P,S)ﬂeng (Zw)zTr((Hm)ys(l&— P+m)
X y*(L+8+m)){ne(lo, u)DiscAg(L) Tre=—2m? Tr(Py°y*) = Tr(8L,Py°y*).
XAR(L+S)AA(L=P)+ne(lg—po, 1)
X DiscAr(L—P)AR(L)AR(L+S) B. Zero momenta limit
+ne(lg+Sg, 1) DisCAR(L+S) We can now proceed with the expansion in powers of the
X Ap(L)AA(L—P)}. 17) external momenta. The first term in this expansion is of de-

gree—1 in the external momenta. An explicit calculation of
Again’ the expression becomes Simp|er if we perform théhls term shows that it vanishes thanks to energy-momentum
changes of variables —P—L on the second term, and conservation';P+K+S=0. The next term, of degree 0 in
+S—L on the third one. This enables one to have commorthe external momenta, vanishes also because the correspond-
statistical weight and discontinuity for the three terms, theing integrand is an odd function df Therefore, the first
tradeoff being that the trace becomes different for the thre@onvanishing term is of degree 1 in the external momenta.
terms. We can apply the same manipulations to the contribuAn explicit extraction of this term gives
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- e (+edl N(—opp) =N (op) (P p2 $ & K2
e KPS=Igm | oo 20 o | T YO R, 52 (L, 97 (L, K2
K2 p? 1 K¢ p* &
+ 5 >+ + +
(L, K)? (L, P)? (L, K)(L,P)L, 9L, K L, P L,S
Tr(L,y®y*) [ K2 ( P2 & >+ s P Tr(L,8Ky°y*)[ & Kz}
L, K |L,K\L,P L,S/ (L,9* (L, P)? (L, K)I(L,S|[L,S L,K
TrHKPL,y°y*)[ KZ P2 | THBL,Pyy)[ P & -
(L, P)(L, K |L,K L, P| (L, S(L,P)|L,P L,S| (29

At this point, we can make use of Eq8) and(8). It is now

The fact that the Dirac’s traces depend upon the loop mo-

obvious that the result can be expressed in terms of the folmentumL indicates that it could be necessary to calculate all

lowing integrald

:J“’ﬂ Ne(—op,u) —Ne(op,u) 1 1
ABT ) 2w 20, L,-AL,.-B’

=j+ooﬂ nF(_wl!M)_nF(wlwu“) 1
AN ) L 2w 2w, (L,-A)?

[(A)

A2

o _ [T7dl ne(— o, u) —Nne(o),p)
JAAB=

,wz 2(!)|
b 1 21
L AZL. B 21)
o dl ne(—op,p) —ne(w), p)
Jaagc=Mm Py
700277 2(1)|
1 1 1

X
(Ly-A)?L,-BL,-C’

Sunaamr? [ 7L T )0
AnBB=T0 | 27 20,
1 1

A2 (L, B

whereA,B,C can be any oP,SK.

C. Transversality

The major difference compared to the case of ey

the integrals before one can see the transversality. The situ-
ation is not so intricate though, since it happens that we only
need to establish some relations between the various inte-
grals defined in Eqg21). In Appendix B, we show how the
last three integrals of Eq21) can be expressed as functions
of the first two. Using the relations given in EqB2), (B5),
and(B6), as well as Eq(B7), it is a simple matter of algebra
to check the transversality of the’oy amplitude with re-
spect toK, without the need of calculating the variodga
andJag.

Once we know that the result can indeed be written as

I'“=TK*, one can contract the amplitude wif} for in-
stance, in order to extract the coefficidnt A straightfor-
ward calculation gives

T4/ K,P,S)=ieg?K*F(P,S), (22)
with
P2S21(S)+ (P-S)[P21(P)+(P-K)I(K)]

(PAS)? ‘
(23

F(P,S)=

where implicitly K= —P—S. At first sight, this expression
could become infinite whenever two momenta become par-
allel. However, one can check that this is not the case, be-
cause the numerator behaves liKe/(S)? when P/AS be-
comes small.

D. Discussion

We see that this three-point amplitude involving the
field depends on the same functibh) defined above, and

amplitude is that the above three-point amplitude is Not,5¢ one power of the magsless when compared to they
manifestly transverse with respect to the photon momentunhmp"tud& in agreement with the general arguments of

"Note that we need only,agc WhenA+B+C=0. Having cal-

[1,2,12.
Again, it is found that this limit depends on the kinemat-
ics, i.e., on the way one is approaching the zero momenta

culatedJaagc Under this restrictive assumption, one cannot obtainlimit. In particular, the way this amplitude depends orat

Jaagg from it by enforcingC=B.

small m depends strongly on the kinematics. This is to be
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contrasted with the result dfL2], which only picked one F.G. is supported by DOE under Grant No. DE-AC02-
particular limit. Except at the static poink{=py=s7,=0), 98CH10886.
this amplitude becomes singular at the critical point where

m—0, indicating the necessity of regulgrizing the fe_rmion APPENDIX A: PROPERTIES OF THE FUNCTION 1 (K)
propagator by a thermal mass. After this resummation has

been performed, this amplitude is regular but does not vanish 1. Vacuum limit
in the chirally symmetric.phase. Therefqre, .the conjecture of The purpose of this appendix is to study the integ¢&l)
[2] holds, but only after infrared regularization. _since all the quantities calculated in this paper can be ex-
One can also write an effective coupling associated withpressed in terms of this function. A first check is to look at
this amplitude: the zero temperature and chemical potential limit of this
function, which gives immediately
—ed? 20 AP i i 1
Entrr=eg eﬂ”f IHATCIR (9 10x,) fim 1K) =5——. (A1)
a0t 2mm

X[o(x2) dy (%) + TO(X1) Iy 7 (X2) 1| xy =y =

(24) As one could expect, thif= x =0 limit does not exhibit any
nonlocality in its momentum dependence, since this is a
purely thermal feature.

Of course, if one uses E@Al), one finds a local limit for
this effective coupling in the limit of zero temperature and 2. Transformation into a sum

density. A convenient way to look at the high temperature or den-

sity limit is to turn the integral defining(K) in Eq. (14) into

a sum, by making use of the following identfty:
V. CONCLUSIONS

11 - 1
In this paper, we have studied thdy and 7%y ampli- 511 o X nZO Xt (2nt1)2a? (A3)

tudes in the two-dimensionat model at finite temperature

and density. For both of these amplitudes, the zero momentiah.

limit is not unique and strongly depends on the kinematical IS
configuration. In particular, the imaginary time formalism
should be used with great care when looking at this limit.
Indeed, if one first sets the external discrete energies to zero,

identity enables one to rewriteng(— w;,u)
—ng(w;,u) as a series, from which it is straightforward to
first obtain

then all the information regarding the nonlocality of the am- 1 k2+1 2 (4= v+ §2+
litude is | in particular the physical limi (K== = 2 | dv——y
plitude is lost, and in particular the physical limit cannot be TT2 k=1 750 ) O (024 £2)2
recovered. A proper way to use the imaginary time formal-
ism would be to perform the sum over the loop discrete v2+Aﬁ
energies while keeping nonzero external discrete energies. Xm, (A4)
n n

After that, one should perform the analytical continuation to
real external energies, and only then consider the zero mo-
menta limit. where we denote

The other conclusion of this work is that collinear or in-
frared singularities spoil the general symmetry arguments | , m? K2
given in[1,2,17 to justify the nullity of the pion decay into V=T k=kolk, &i= T2 2+ 1
photons in the chirally symmetric phase: the-shelldecay

amplitude in the bare theory does not vanish. For these ar- ) ) (Af)
guments to be valid, one should perform the resummation of 2 2904 1)24 m u- 24200+ Pl
a thermal mass that will regularize the fermion propagators. An=m 2Nt D" 7 =3z, Bp=4m(2nt D).

If such a regularization is used, then the conclusion is that
m%— vy vanishes wherm—0, while 7%c— y does not, in

; _ At this stage, it remains to perform term by term the integra-
agreement with the conjecture [df].

tion overduv, which is elementary and yields

ACKNOWLEDGMENTS
8To derive this formula, one can start from Mittag—Leffler's ex-

. . i f th t functiof26,27:
We thank the Erwin Schdbinger Institute for support and pansion of the cot functiof26,27

+o0
hospitality during the worshop “BRST cohomology, quanti- :}+2 z A2
zation and anomalies,” where this work started. The work of cot? z nZl?*rF?' (A2)
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vz+§i

+ oo 02+A§
J do— S 7
—o (v°+§&2)° (v°+A;)“+B;

r 0|1 (@-2) A8
2ot le (A-E)B
| MBI 28 AL (8 -8 I Br e
(Af—€)%+B]
A+ B+ A2

2(Ay+B?)

. (AB)

3. Chiral limit far from the light cone

Another interesting limit is the chiral limit, whersn/T

goes to zero, whileu/T is kept fixed. It is very easy to

PHYSICAL REVIEW 68 016001

~ 8 cosR(u/2T)’

7 R S I i 1w
Fl(?)__szqr”’["” 5*'%)*‘/’ 2 'm”
e
W if ,LL<T
~ - . (A12)

4. Light cone limit

Note, however, that this expansion is not valid near the
light cone. Indeed, its derivation assumed that a small

extract from the above formula a systematic expansion ifvould imply a smallé_, which is not true ifK* is small(or

powers ofm/T. It is just a matter of expanding at small

equivalentlyx?~1). Sufficiently close to the light coné,

the above expression, which gives for the first two orders becomes large and a different kind of expansion must be

m K2+ 2k?
Tk

1
I(K):FI'

Ko

M

T

T

—+

m2
o| %

(A7)

where the coefficients are given by

P S !
o\ T)= 728 nt1+iwlaT)?’

+eo 2 21 2712
A (2n+21)“—=3u/ 7T
Fl(?) S nZo Cn+ D G )7+ w2121

(A8)
Introducing the “digamma” function,
d
W)= InT(2), (A9)
and a series representation of its first derivative,
+ =
g % =4n§0 BTt (A10)

it is immediate to check

9The equality on the first line is exact and comes from the formula

(26,27

r@r(1-2= (A11)

o
sin(mz)’

considered. In this region of phase space, one can write

+ oo

1 2 1
lim I(K)=lim
oo ( ) PR 2§_T2 K2_1 =0 [§_+(2n+ 1)71_]2
& 1 (1 &
= lim ooy 5+ 5], (A13)
& —+w

where we have usetkf— 1) '~ ¢2 T?/m?. Making use of
Stirling’s formula[26,27], we obtain

m
K20

We notice that the on-shell value bfK) is totally immune

to corrections due to temperature or density. The origin of
this property can be understood from Ed4): when K?
=0, the denominator behaves likém*/1* (this is reminis-
cent of a collinear singularity cured by the mas}, and the
integral is completely dominated by its ultraviolet sector. As
a consequenceé(K) is saturated by the vacuum contribution
for this value ofk?. Away from the light cone, thermal cor-
rections of order ThT appear inl (K).

APPENDIX B: RELATIONS BETWEEN SOME INTEGRALS

In this appendix, we establish some useful relations be-
tween the five integrals defined in E@1). Let us start by
the study ofd4,g: this integral satisfies the>22 linear sys-
tem

A,MJKAB: Jags
(B1)
B,MJKAB: Jans

while the limit x>T in the last line is obtained from Stirling's the resolution of which gives the two componentsiff s as

expansiorn[26,27 for I'(z).

functions ofJpa andJpg:
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EMJAB_AMJAA B.B.Jares=JaA;
V- (B2)
which finally gives
In order to obtainJyagg it is convenient to define first the

second rank tensor 2(A-B)Jag— AZJpa—B2Jgg
Janee= (AAB)? (BS)
e _ [l Ne(— 0y ) ey, 0)
JAaBE= o 2 ; i i
—w & @ The same method can be appliedJig\gc, Which gives
X L L (B3) A?IpatB2Ipg+ C?nc
(Ly-A)? (L, -B)?” Janec= (AAB)? , (B6)

from which we can obtaillaagg @S g,,Jargs- The three _
independent components of this symmetric tensor can be obthder the assumption that+B+C=0. We also need the
tained via the resolution of the following>33 linear system  following relation,

A.B,JAaes=JAB: JagtJgctIca=0, (B7)

ALA I ase= BB (B4)  which is valid whenA+B+C=0.
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