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Anomalous processes at high temperature and density in a two-dimensional linears model
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We use the two-dimensionals model as a toy model to study the behavior of anomalous amplitudes in the
limit where the constituent quark mass is small. Symmetry arguments show that thep0→g amplitude should
vanish if m→0, but we show that the one-loopp0g amplitude does not satisfy this property because of
infrared singularities. However, when a proper regularization~resummation of a thermal mass, for instance! is
taken into account, this amplitude vanishes as expected. We also study the amplitudep0s→g and show that
it does not vanish in the same limit.
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I. INTRODUCTION

In past years, many works have been devoted to the s
of anomalous processes at finite temperature and density
in particular near the chiral symmetry restoration. In partic
lar, Pisarski@1,2# concluded that the neutral pion decay a
plitudep0→2g vanishes when chiral symmetry is restore1

This conclusion is based on a direct calculation of the co
sponding diagrams at finite temperature~and zero density! in
the imaginary time formalism, and on symmetry consid
ations that forbid certain couplings in the symmetric pha
An additional conclusion was that this decay might be
placed byp0s→2g in the chirally symmetric phase~which
is allowed by the same symmetry argument!, as indicated by
a calculation of the box diagram at finite temperature.

This result has been confirmed by Baier, Dirks and Ko
@11# and by Salcedo@12# using functional approaches i
which one integrates out the fermions at the level of
generating functional. Salcedo in@12# gives also general ar
guments according to whichp0→2g ~or p0→g in two di-
mensions! should vanish in the chiral phase, and be repla
by amplitudes involving thes meson. From a technical pe
spective, the common point of all these studies is the us
some stage of the imaginary time formalism, in the limit
vanishing external momenta.2

In another study, one of us@13# studied how the neutra

1This does not contradict the well established fact that the co
cient of the axial anomaly is temperature independent~see@3–7#,
for instance!. Indeed, it has been shown in@8–10# that the relation-
ship between the anomaly and the amplitude can be modified by
existence of an additional four-vectorUm ~the four-velocity of the
plasma in the observer’s frame! that can enter the general form o
thermal amplitudes.

2There are two reasons why the small momentum limit is usu
considered in this problem. The first one is that this limit provid
an important technical simplification. The second reason is that
limit is appropriate if one wants to know the effective couplin
between photons and mesons in the low energy regime, in ord
write an effective Lagrangian for instance.
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pion decay amplitude depends on the kinematical configu
tion of the external legs in order to explain the discrepanc
found between@1,2# and calculations performed in the re
time formalism by@14–16#. To that purpose, thep0gg am-
plitude has been calculated at finiteT in the real time formal-
ism, in the limit of small external momenta. It appeared th
this limit cannot be uniquely defined~it depends on the path
followed to reach the zero momenta point! and that the re-
sults of @1,2,11,12# concerning this amplitude do not corre
spond to its on-shell value, but to a different way of reach
the limit.3 Additionally, the conclusion according to whic
the pion decay amplitude vanishes above the critical po
appeared to be questionable since the physical~on-shell! am-
plitude has a nonvanishing limit at the critical point.

To accommodate this result with the general argume
provided in@1,2,12#, one can notice that both Pisarski’s sym
metry argument@1,2# and Salcedo’s argument@12# amount to
the fact that one power of the quark mass~the mass the
quarks acquire through the spontaneous breakdown of c
symmetry, via their coupling to the average value of thes
field! appears in the numerator when evaluating the Di
trace associated to anomalous amplitudes. Therefore, s
the average valuês& goes to zero in the chiral phase, th
numerator vanishes above the critical point. Implicit in t
argument is the fact that the correct dimension is provided
inverse powers of the temperature~as opposed to powers o
the quark mass!, as is the case in the imaginary time forma
ism at the static point. In other words, this argument is va
only if the denominator does not vanish when the mass g
to zero. This is precisely what fails when the amplitude
calculated on shell. One gets as expected one power om
5g^s& in the numerator, but the denominator turns out to
1/mT.
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3The reason for this is easy to understand: since the energy
ables are discrete in the imaginary time formalism, the only w
one can consider the ‘‘zero momenta limit’’ in this formalism is
set first the discrete bosonic energies to zero, and then take the
of zero three momenta. This way, the external momenta are fo
to be spacelike.
©2000 The American Physical Society01-1
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FRANÇOIS GELIS AND MICHEL H. G. TYTGAT PHYSICAL REVIEW D63 016001
The remaining power ofm in the denominator indicate
that the infrared or collinear behavior of the triangle diagr
worsens whenm→0. In fact, as noted in@13# and @17#, the
constituent quark massm ceases to be the relevant infrare
regulator whenm is smaller thangT, and should be replace
by a thermal mass of ordergT that does not vanish in th
chiral limit. Since an additional property of fermionic the
mal masses is that they respect chiral symmetry, this ther
mass cannot appear in the Dirac trace. As a consequence
resultm/mT obtained for the on-shell amplitude in the ba
theory becomesm/mthT after one has resummed the qua
thermal massmth;gT ~if m!mth). The consequence of thi
regularization is that the resummed on-shell decay amplit
vanishes in the chiral limit. In other words, Pisarski’s sy
metry arguments holds for the physical amplitude only a
a proper regularization~in order to get rid of all potentia
infrared or collinear singularities! has been issued.

Essential in this discussion is the influence of the kin
matical conditions for the external legs on the infrared
havior of a thermal amplitude, since it can dramatically al
one’s conclusions. The second important point is that a
culation in the imaginary time formalism at the static po
does not give a physical amplitude. Therefore, it would
interesting to test the second half of Pisarski’s conclusio
related to thep0s→2g amplitude, by calculating this am
plitude in the real time formalism and studying how it d
pends on the kinematics~up to now, this amplitude has onl
been considered at the static point!. Since this amplitude is
given by a four-point function, it is a very complicated ta
to extract this behavior in its full generality. There is, ho
ever, a toy model in which this kind of study can be do
quite simply: the two-dimensional linears model. Indeed, in
this model the neutral pion decays into a single photon,
that analogous to the four-point amplitude suggested
Pisarski would bep0s→g, which, being a three-point func
tion, is rather easy to calculate.

The present paper is devoted to an analysis of the ano
lous amplitudes in the two-dimensionals model at finite
temperature and chemical potential. We consider both
pion decay p0→g two-point function and thep0s→g
three-point function. Emphasis is put on studying how th
functions depend on the kinematics in the limit of small e
ternal momenta, near the chiral limit (m small compared to
m andT).

The structure of the paper is as follows. In Sec. II w
define the model, as well as some notations and shorth
that will be used extensively later. In Sec. III, we calcula
the amplitude for thep0→g decay, and reduce it to a ver
compact form. In Sec. IV, we study the amplitude ofp0s
→g. Althougha priori much more involved, this amplitud
can also be reduced to a simple expression. All our res
are expressed in terms of some functionI (K) defined by an
integral. Basic properties and limits of this function are d
rived in Appendix A. Finally, in Appendix B we derive som
relations between a few integrals that appear in intermed
stages of Sec. IV.

II. CONVENTIONS AND NOTATIONS

We consider the two-dimensional linears model @18,19#
~more details on this model can be found in@20–22#! with
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two quark flavors, in which the mesons are coupled to qu
fields as indicated by the following Lagrangian:

L[ i C̄D” C22gC̄~st01 i p•tg5!C, ~1!

where t051/2 and Tr(tatb)5dab/2. We recall that in two
dimensions the Dirac algebra is defined by the following
of relations:

$gm,gn%52gmn,
~2!

g55 1
2 emngmgn ,

whereemn is the two-dimensional Levi–Civita tensor, no
malized bye01511. For later use, let us quote first a gene
trace formula:

Tr~A” B” C” g5gm!5A•B Tr~C” g5gm!2A•C Tr~B” g5gm!

1B•C Tr~A” g5gm!. ~3!

In order to keep the following expressions compact, it
helpful to define the ‘‘dual’’ of a given vector by

Ãm[emnAn , ~4!

as well as the ‘‘wedge product’’ of two vectors:

A`B[emnAmBn . ~5!

According to these definitions, we have the obvious relatio

Ã̃5A,

A`B5A•B̃, ~6!

~A`B!25~A•B!22A2B2.

WhenA1B1C50, we have also

A`B5B`C5C`A. ~7!

Finally, we have

Tr~A” g5gm!522Ãm. ~8!

III. p0\g AMPLITUDE

A. Retarded amplitude

We consider first the one-loop contribution to thep0

→g decay amplitude depicted in Fig. 1. The Feynman ru

FIG. 1. One-loopp0g amplitude.
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ANOMALOUS PROCESSES AT HIGH TEMPERATURE AND . . . PHYSICAL REVIEW D63 016001
for the retarded-advanced formalism4 @23–25# give for the
retarded amplitude the following expression,

P
R

m~K !52egE d2L

~2p!2Tr„~L”1m!gm~L”1K” 1m!g5
…

3$n
F
~ l 0 ,m!DiscDR~L !DR~L1K !

1nF~ l 01k0 ,m!DiscDR~L1K !DA~L !%, ~9!

whereDR,A(L)[ i /(L22m26 i l 0e) are the retarded and ad
vanced propagators,nF( l 0 ,m)[1/@exp„( l 02m)/T…11# is
the Fermi–Dirac distribution function, and where the no
tion ‘‘Disc’’ denotes the discontinuity across the real ener
axis:

DiscDR~L ![DR~L !2DA~L !52pe~ l 0!d~L22m2!.
~10!

The expression of the trace is very simple,

Tr„~L”1m!gm~L”1K” 1m!g5
…522mK̃m, ~11!

and, in particular, it makes obvious the fact thatPR
m is trans-

verse with respect to the photon momentum. Moreover,
ing independent of the loop momentumL, it can be immedi-
ately factorized out of the integral.

B. Zero momentum limit

At this point, it is convenient to perform the change
variableL1K→2L on the second term of Eq.~9! in order
to make the expression more symmetric. Then, the D
distributions hidden in the discontinuities make the integ
tion over l 0 trivial, which gives5

PR
m~K !522imegK̃mE

2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

3 (
h561

1

2Lh•K1K2 , ~12!

where we denotev l[Al 21m2 andLh[(hv l ,l ). It is now
trivial to perform an expansion in powers of the extern
momentumK. The first term in this expansion, of degree 0
K, vanishes because the corresponding integrand is an
function of l. The first nonvanishing term in this expansio
comes at the next order, and is of degree 1 inK:

4One should pay special attention to the chemical potential.
deed, one should use a chemical potential2m in statistical weights
where the Feynman rules give an argument2k0. In other words,m
appears in the formalism to account for the fact that the fermi
carry some conserved charge, and the sign of this charge for a g
propagator depends on how one orientates the propagator.

5We have dropped the R/A prescription for the denominator, si
it can easily be recovered at the very end of the calculation
substitutingk0→k01 i01.
01600
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PR
m~K !5 imegK̃mI ~K !, ~13!

where I (K) is a homogeneous function of degree 0 inK,
containing the nontrivial part of the momentum depende
and defined by

I ~K ![E
2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

K2

~L1•K !2 .

~14!

This integral is studied in some important limits in Append
A.

C. Discussion

We observe for this amplitude the same features as in
dimensions. The most striking effect is related to what h
pens near the chiral limitm→0, and is visible in formulas
~A7! and ~A14!. In the limit m/T,m/m→0, the function
I (K) behaves as follows:

If K250, I ~K !5
1

2pm2 .

If K25” 0 and k05” 0, I ~K !5
1

8mT

k0

AK2

1

cosh2~m/2T!
.

~15!

If k050, I ~K !5H 7z~3!

8p3T2 if m!T,

2
1

4pm2 if T!m.

The configuration obtained withk050 and m!T corre-
sponds to Salcedo’s result, previously obtained in the ima
nary time formalism at the static point. This point is partic
lar because the first term in the expansion ofI (K) at smallm
vanishes ifk050. For any other point, the expansion sta
with a term behaving likeI (K);1/mT. However, as one
turns the chemical potential on, we see that this leading t
is exponentially suppressed whenm@T. As a consequence
in a dense and cold system, the functionI (K) starts by a
term in 1/m2, whetherk050 or not.

The reason why the on-shell value is so singular wh
m→0 is related to collinear singularities: in 111 dimen-
sions, all the spatial vectors are aligned, so that we are
ways at the most singular point.6 Here also, in order to be
able to apply Pisarski’s argument, one should first regula
the theory by resumming a thermal mass@13,17#. Then, all

-

s
en

e
y

6This is to be contrasted with what happens in four dimensio
there the collinear singularities are softened by subsequent an
integrations, so that the on-shell amplitude is not exceptionally
gular @13,16#.
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FRANÇOIS GELIS AND MICHEL H. G. TYTGAT PHYSICAL REVIEW D63 016001
the powers ofm in the denominators would be replaced
powers of the thermal mass, leaving an uncompens
power of m→0 in the numerator. From Eq.~13!, we can
write an effective Lagrangian coupling the neutral pion to
photon:

L pog52egmemnE d2xAm~x!I ~ i ]x!]x
np0~x!

52eg2emnE d2xAm~x!I ~ i ]x!^s&]x
np0~x!. ~16!

This result completes the effective coupling found by S
cedo in @12#, by incorporating all the nonlocal terms. Th
reason why the nonlocality of this coupling has been mis
in @12# can of course be traced back in the choice of cons
ering only amplitudes at the static point.

We can also make here a general comment regarding
fact that the symmetry argument implying that thep0g am-
plitude vanishes in the chiral limit is not verified in the abo
one-loop calculation. In fact, this symmetry argument app
to the full amplitude, but not necessarily at the level of in
vidual diagrams. More precisely, since the chiral limit cor
sponds tom→0, the argument will hold for any contributio
that remains finite~in particular, IR finite! in this massless
limit. The consequence of this problem is that this symme
is manifest in perturbation theory only forsetsof diagrams
that are IR finite. This is why it may be necessary to perfo
the resummation of a thermal mass~i.e., consider larger set
of diagrams whose sum is infrared finite! in order to recover
the result implied by chiral symmetry.

IV. p0s\g AMPLITUDE

A. Retarded amplitude

We now consider the one-loop contribution to thep0s
→g amplitude, represented in Fig. 2. In the retarde
advanced formalism, theGARR

m component of the vertex re
ceives the following contribution from the first diagram:

GARR
m,(1)~K,P,S!5 ieg2E d2L

~2p!2 Tr„~L”1m!g5~L”2P” 1m!

3gm~L”1S”1m!…$nF~ l 0 ,m!DiscDR~L !

3DR~L1S!DA~L2P!1nF~ l 02p0 ,m!

3DiscDR~L2P!DR~L !DR~L1S!

1nF~ l 01s0 ,m!DiscDR~L1S!

3DA~L !DA~L2P!%. ~17!

Again, the expression becomes simpler if we perform
changes of variablesL2P→L on the second term, andL
1S→L on the third one. This enables one to have comm
statistical weight and discontinuity for the three terms,
tradeoff being that the trace becomes different for the th
terms. We can apply the same manipulations to the contr
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tion of the second diagram. With the additional changeL
→2L on the second diagram, we can merge the two con
butions and find

GARR
m ~K,P,S!5 ieg2E

2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

3 (
h561

H Tra
m

~2Lh•K1K2!~22Lh•S1S2!

1
Trb

m

~2Lh•P1P2!~22Lh•K1K2!

1
Trc

m

~2Lh•S1S2!~22Lh•P1P2!J , ~18!

where the traces are given by

Tra
m522m2 Tr~P” g5gm!22Lh•STr~L” hg5gm!

2Tr~L” hS”K” g5gm!,

Trb
m522m2 Tr~P” g5gm!12Lh•P Tr~L” hg5gm!

2Tr~K” P” L” hg5gm!, ~19!

Tra
m522m2 Tr~P” g5gm!2Tr~S”L” hP” g5gm!.

B. Zero momenta limit

We can now proceed with the expansion in powers of
external momenta. The first term in this expansion is of
gree21 in the external momenta. An explicit calculation
this term shows that it vanishes thanks to energy-momen
conservation:P1K1S50. The next term, of degree 0 i
the external momenta, vanishes also because the corresp
ing integrand is an odd function ofl. Therefore, the first
nonvanishing term is of degree 1 in the external momen
An explicit extraction of this term gives

FIG. 2. One-loopp0sg amplitude.
1-4
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GARR
m ~K,P,S!5 i

eg2

8 E
2`

1` dl

2p

n
F
~2v l ,m!2n

F
~v l ,m!

2v l
(

h561
H 2m2 Tr~P” g5gm!F P2

~Lh•P!2

S2

~Lh•S!21
S2

~Lh•S!2

K2

~Lh•K !2

1
K2

~Lh•K !2

P2

~Lh•P!21
1

~Lh•K !~Lh•P!~Lh•S! S K4

Lh•K
1

P4

Lh•P
1

S4

Lh•SD G
1

Tr~L” hg5gm!

Lh•K F K2

Lh•K S P2

Lh•P
2

S2

Lh•SD1
S4

~Lh•S!2 2
P4

~Lh•P!2G1
Tr~L” hS”K” g5gm!

~Lh•K !~Lh•S! F S2

Lh•S
2

K2

Lh•KG
1

Tr~K” P” L” hg5gm!

~Lh•P!~Lh•K ! F K2

Lh•K
2

P2

Lh•PG1
Tr~S”L” hP” g5gm!

~Lh•S!~Lh•P! F P2

Lh•P
2

S2

Lh•SG J . ~20!
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At this point, we can make use of Eqs.~3! and~8!. It is now
obvious that the result can be expressed in terms of the
lowing integrals7

JAB[E
2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

1

L1•A

1

L1•B
,

JAA[E
2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

1

~L1•A!2

5
I ~A!

A2 ,

JAAB
m [E

2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

3
L1

m

~L1•A!2

1

L1•B
, ~21!

JAABC[m2E
2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

3
1

~L1•A!2

1

L1•B

1

L1•C
,

JAABB[m2E
2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

3
1

~L1•A!2

1

~L1•B!2 ,

whereA,B,C can be any ofP,S,K.

C. Transversality

The major difference compared to the case of thep0g
amplitude is that the above three-point amplitude is
manifestly transverse with respect to the photon moment

7Note that we need onlyJAABC whenA1B1C50. Having cal-
culatedJAABC under this restrictive assumption, one cannot obt
JAABB from it by enforcingC5B.
01600
l-

t
.

The fact that the Dirac’s traces depend upon the loop m
mentumL indicates that it could be necessary to calculate
the integrals before one can see the transversality. The
ation is not so intricate though, since it happens that we o
need to establish some relations between the various
grals defined in Eqs.~21!. In Appendix B, we show how the
last three integrals of Eq.~21! can be expressed as function
of the first two. Using the relations given in Eqs.~B2!, ~B5!,
and~B6!, as well as Eq.~B7!, it is a simple matter of algebra
to check the transversality of thep0sg amplitude with re-
spect toK, without the need of calculating the variousJAA
andJAB .

Once we know that the result can indeed be written
Gm5GK̃m, one can contract the amplitude withS, for in-
stance, in order to extract the coefficientG. A straightfor-
ward calculation gives

GARR
m ~K,P,S!5 ieg2K̃mF~P,S!, ~22!

with

F~P,S![
P2S2I ~S!1~P•S!@P2I ~P!1~P•K !I ~K !#

~P`S!2 ,

~23!

where implicitly K52P2S. At first sight, this expression
could become infinite whenever two momenta become p
allel. However, one can check that this is not the case,
cause the numerator behaves like (P`S)2 when P`S be-
comes small.

D. Discussion

We see that this three-point amplitude involving thes
field depends on the same functionI (.) defined above, and
has one power of the massm less when compared to thepog
amplitude, in agreement with the general arguments
@1,2,12#.

Again, it is found that this limit depends on the kinema
ics, i.e., on the way one is approaching the zero mome
limit. In particular, the way this amplitude depends onm at
small m depends strongly on the kinematics. This is to

n
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FRANÇOIS GELIS AND MICHEL H. G. TYTGAT PHYSICAL REVIEW D63 016001
contrasted with the result of@12#, which only picked one
particular limit. Except at the static point (k05p05s050),
this amplitude becomes singular at the critical point wh
m→0, indicating the necessity of regularizing the fermi
propagator by a thermal mass. After this resummation
been performed, this amplitude is regular but does not va
in the chirally symmetric phase. Therefore, the conjecture
@2# holds, but only after infrared regularization.

One can also write an effective coupling associated w
this amplitude:

L p0sg5eg2emnE d2xAm~x!F~ i ]x1
,i ]x2

!

3@s~x2!]x1

n p0~x1!1p0~x1!]x2

n s~x2!#ux15x25x .

~24!

Of course, if one uses Eq.~A1!, one finds a local limit for
this effective coupling in the limit of zero temperature a
density.

V. CONCLUSIONS

In this paper, we have studied thep0g andp0sg ampli-
tudes in the two-dimensionals model at finite temperature
and density. For both of these amplitudes, the zero mom
limit is not unique and strongly depends on the kinemati
configuration. In particular, the imaginary time formalis
should be used with great care when looking at this lim
Indeed, if one first sets the external discrete energies to z
then all the information regarding the nonlocality of the a
plitude is lost, and in particular the physical limit cannot
recovered. A proper way to use the imaginary time form
ism would be to perform the sum over the loop discr
energies while keeping nonzero external discrete energ
After that, one should perform the analytical continuation
real external energies, and only then consider the zero
menta limit.

The other conclusion of this work is that collinear or i
frared singularities spoil the general symmetry argume
given in @1,2,12# to justify the nullity of the pion decay into
photons in the chirally symmetric phase: theon-shelldecay
amplitude in the bare theory does not vanish. For these
guments to be valid, one should perform the resummatio
a thermal mass that will regularize the fermion propagato

If such a regularization is used, then the conclusion is t
p0→g vanishes whenm→0, while p0s→g does not, in
agreement with the conjecture of@1#.
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APPENDIX A: PROPERTIES OF THE FUNCTION I „K…

1. Vacuum limit

The purpose of this appendix is to study the integralI (K)
since all the quantities calculated in this paper can be
pressed in terms of this function. A first check is to look
the zero temperature and chemical potential limit of t
function, which gives immediately

lim
T,m→01

I ~K !5
1

2pm2 . ~A1!

As one could expect, thisT5m50 limit does not exhibit any
nonlocality in its momentum dependence, since this is
purely thermal feature.

2. Transformation into a sum

A convenient way to look at the high temperature or de
sity limit is to turn the integral definingI (K) in Eq. ~14! into
a sum, by making use of the following identity:8

1

ex11
5

1

2
22x (

n50

1`
1

x21~2n11!2p2 . ~A3!

This identity enables one to rewritenF(2v l ,m)
2nF(v l ,m) as a series, from which it is straightforward
first obtain

I ~K !52
1

pT2

k211

k221 (
n50

1` E
2`

1`

dv
v21j1

2

~v21j2
2 !2

3
v21An

2

~v21An
2!21Bn

2 , ~A4!

where we denote

v[
l

T
, k[k0 /k, j6

2 [
m2

T2

k2

k261
~A5!

An
2[p2~2n11!21

m2

T2 2
m2

T2 , Bn
2[4p2~2n11!2

m2

T2 .

At this stage, it remains to perform term by term the integ
tion overdv, which is elementary and yields

8To derive this formula, one can start from Mittag–Leffler’s e
pansion of the cot function@26,27#:

cot~z!5
1

z
12 (

n51

1`
z

z22n2p2 . ~A2!
1-6
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E
2`

1`

dv
v21j1

2

~v21j2
2 !2

v21An
2

~v21An
2!21Bn

2

52
p

2j2

]

]j2

F 1

j2

~j1
2 2j2

2 !~An
22j2

2 !

~An
22j2

2 !21Bn
2

1
An

41Bn
222j1

2 An
21~j1

2 2j2
2 !AAn

41Bn
21j1

2 j2
2

~An
22j2

2 !21Bn
2

3AAAn
41Bn

21An
2

2~An
41Bn

2!
G . ~A6!

3. Chiral limit far from the light cone

Another interesting limit is the chiral limit, wherem/T
goes to zero, whilem/T is kept fixed. It is very easy to
extract from the above formula a systematic expansion
powers ofm/T. It is just a matter of expanding at smallj6

the above expression, which gives for the first two order

I ~K !5
1

mTF k0

AK2
F0S m

T
D 1

m

T

K212k2

K2 F1S m

T
D 1OS m2

T2 D G ,

~A7!

where the coefficients are given by

F0S m

T D5
1

p2Re(
n50

1`
1

~2n111 im/pT!2 ,

F1S m

T D5
1

p3 (
n50

1`

~2n11!
~2n11!223m2/p2T2

~~2n11!21m2/p2T2!3 .

~A8!

Introducing the ‘‘digamma’’ function,

c~z![
d

dz
ln G~z!, ~A9!

and a series representation of its first derivative,

c8S 11z

2 D54(
n50

1`
1

~2n111z!2 , ~A10!

it is immediate to check9

9The equality on the first line is exact and comes from the form
@26,27#

G~z!G~12z!5
p

sin~pz!
, ~A11!

while the limit m@T in the last line is obtained from Stirling’s
expansion@26,27# for G(z).
01600
in

F0S m

T D5
1

8p2 Fc8S 1

2
1 i

m

2pTD1c8S 1

2
2 i

m

2pTD G
5

1

8 cosh2~m/2T!
,

F1S m

T D52
1

32p3 Fc9S 1

2
1 i

m

2pTD1c9S 1

2
2 i

m

2pTD G

'H 7z~3!

8p3 if m!T

2
T2

4pm2 if T!m

. ~A12!

4. Light cone limit

Note, however, that this expansion is not valid near
light cone. Indeed, its derivation assumed that a smallm/T
would imply a smallj2 , which is not true ifK2 is small~or
equivalentlyk2'1). Sufficiently close to the light cone,j2

becomes large and a different kind of expansion must
considered. In this region of phase space, one can write

lim
K2→0

I ~K !5 lim
j2→1`

1

2j2T2

2

k221 (
n50

1`
1

@j21~2n11!p#2

5 lim
j2→1`

j2

m2

1

4p2 c8S 1

2
1

j2

2p D , ~A13!

where we have used (k221)21'j2
2 T2/m2. Making use of

Stirling’s formula @26,27#, we obtain

lim
K2→0

I ~K !5
1

2pm2 . ~A14!

We notice that the on-shell value ofI (K) is totally immune
to corrections due to temperature or density. The origin
this property can be understood from Eq.~14!: when K2

50, the denominator behaves likek2m4/ l 4 ~this is reminis-
cent of a collinear singularity cured by the massm), and the
integral is completely dominated by its ultraviolet sector.
a consequence,I (K) is saturated by the vacuum contributio
for this value ofK2. Away from the light cone, thermal cor
rections of order 1/mT appear inI (K).

APPENDIX B: RELATIONS BETWEEN SOME INTEGRALS

In this appendix, we establish some useful relations
tween the five integrals defined in Eq.~21!. Let us start by
the study ofJAAB

m : this integral satisfies the 232 linear sys-
tem

AmJAAB
m 5JAB ,

~B1!
BmJAAB

m 5JAA ,

the resolution of which gives the two components ofJAAB
m as

functions ofJAA andJAB :

a

1-7
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JAAB
m 5

B̃mJAB2ÃmJAA

A`B
. ~B2!

In order to obtainJAABB it is convenient to define first the
second rank tensor

JAABB
mn [E

2`

1` dl

2p

nF~2v l ,m!2nF~v l ,m!

2v l

3
L1

m

~L1•A!2

L1
n

~L1•B!2 , ~B3!

from which we can obtainJAABB as gmnJAABB
mn . The three

independent components of this symmetric tensor can be
tained via the resolution of the following 333 linear system

AmBnJAABB
mn 5JAB ,

AmAnJAABB
mn 5JBB , ~B4!
-

ys

ys

01600
b-

BmBnJAABB
mn 5JAA ,

which finally gives

JAABB5
2~A•B!JAB2A2JAA2B2JBB

~A`B!2 . ~B5!

The same method can be applied toJAABC, which gives

JAABC5
A2JAA1B2JAB1C2JAC

~A`B!2 , ~B6!

under the assumption thatA1B1C50. We also need the
following relation,

JAB1JBC1JCA50, ~B7!

which is valid whenA1B1C50.
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